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ABSTRACT

To test the theory that evolution by gene duplication occurs as a result of positive Darwinian selection
that accompanies the acceleration of mutant substitutions, DNA sequences of recent duplication were
analyzed by estimating the numbers of synonymous and nonsynonymous substitutions. For the troponin
C family, at the period of differentiation of the fast and slow isoforms, amino acid substitutions were shown
to have been accelerated relative to synonymous substitutions. Comparison of the first exon of a-actin
genes revealed that amino acid substitutions were accelerated when the smooth muscle, skeletal and
cardiac isoforms differentiated. Analysis of members of the heat shock protein 70 gene family of mammals
indicates that heat shock responsive genes including duplicated copies are evolving rapidly, contrary to
the cognitive genes which have been evolutionarily conservative. For the a,-antitrypsin reactive center, the
acceleration of amino acid substitution has been found for gene pairs of recent duplication.

VOLUTION by gene duplication has now been
widely accepted as an important phenomenon
(Ouno 1970; OHTA 1980). Based on theoretical study, I
suggested that positive Darwinian selection is needed for
acquiring a gene with a modified function, whereas
genes whose function has been fixed for a long time
evolve mostly through random genetic drift (OHTA
1988). There are now several examples that are com-
patible with the above theory, stomach lysozyme (IRWIN
and WiLsoN 1990), visual pigment genes (YOKOYAMA and
Yokovama 1990), homeobox family (KAPPEN et al. 1989),
hemoglobin vy (FrrcH et al. 1991), alcohol dehydrogenase
(LoNG and LANGLEY 1993), ion channel family (STRONG et al.
1993) and growth hormone family (OHTA 1993; WAaLLIS
1993). There are other examples of accelerated amino acid
substitution connected to duplication, in which the un-
derlying mechanism is not obvious (L1 1985).

To examine the mechanisms of evolution by gene du-
plication, it is desirable to clarify the pattern of nucle-
otide substitutions of recently duplicated genes, because
old differentiation is masked by subsequent nucleotide
substitutions and therefore often undetectable. Espe-
cially if one wants to determine the relative numbers of
synonymous and nonsynonymous substitutions among
duplicated genes, the former may be saturated by old
duplication, and a reliable estimate cannot be obtained.

What do the relative numbers of synonymous and
nonsynonymous substitutions tell us? Because most of
synonymous substitutions are thought to be selectively
neutral in mammals, they accumulate by mutation rate
{Kimura 1983). If nonsynonymous substitutions show a
different pattern, selection should be responsible for
the pattern. It may be argued that the different pattern
simply reflects change in selective constraint and does

Genetics 138: 1331-1337 (December, 1994)

not show the positive selection. In fact, it is customary to
suppose that positive selection is detectable only when
the number of nonsynonymous substitutions exceeds
that of synonymous substitutions (HUGHEs and NEI
1988). Although the explanation by changing con-
straints cannot be completely denied, the operation of
positive selection is a more natural interpretation, if the
acceleration of amino acid substitutions is detected in
conjunction with functional differentiation.

The data for nucleotide sequences in the gene fami-
lies of troponin C, a-actin, heat shock protein and anti-
trypsin include those of some recently duplicated genes
with distinct functions. The pattern of synonymous and
nonsynonymous nucleotide substitutions of such se-
quences were examined. Nonsynonymous substitutions
were shown to be accelerated in conjunction with func-
tional differentiation,

DATA ANALYSIS

Nucleotide sequences were obtained from the genetic
databases maintained at the National Institute of Ge-
netics, which include GenBank, DDBJ (DNA Databank
of Japan), and EMBL. Five sequences of troponin C,
nine sequences of a-actin, 8 sequences of heat shock
protein 70 and 10 sequences of a;-antitrypsin were used.
For the acquisition and analysis of the data, the ODEN
Package created by Ina (1992) was used. The numbers
of synonymous and nonsynonymous substitutions were
estimated using the method of N1 and GojoBorr (1986)
which is in the ODEN Package. This method divides
nucleotide substitutions into synonymous and nonsyn-
onymous categories, and then the multiple hit is esti-
mated under the assumption of random mutability
among the four kinds of bases. The standard error of the
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TABLE 1

The number of synonymous substitutions (upper figures) and that of nonsynonymous substitutions (lower figures) per 100 sites among
troponin C genes of human, mouse and rabbit

Slow troponin C

Fast troponin C

MUSCTNCA HUMTNCS MUSFSTC6 RABTNC HUMTC2
Slow MUSCTNCA 70.37 + 13.27 236.29 + 111.07 108.81 = 22.26 107.35 = 21.89
40.62*+ 7.75 189.51 = 143.94 111.86 = 31.00 109.53 = 30.33
HUMTNCS 0.26 + 0.26 155.73 * 39.75 94.25 * 18.35 76.57 + 14.55
0.30 £ 0.30 134.14 * 46.92 90.25 * 20.84 84.37*+ 18.45
Fast MUSFSTC6 26.10 = 2.99 25.35 £ 2.94 70.80 * 13.37 77.11 *+ 14.62
27.78* 3.20 26.55* 3.09 42.27 = 8.03 43.38 + 8.41
RABTNC 26.37 + 3.02 25.62 = 2.96 0.26 = 0.26 28.92 * 6.56
26.80 * 3.07 26.21 * 3.04 0.30 = 0.30 19.97 + 4.52
HUMTC2 26.16 * 3.00 25.35 = 2.94 0.52 = 0.37 0.26 £ 0.26
26.65 * 3.06 2517 292 0.61 * 0.43 0.29*0.29

The Roman figures were obtained using the method of NE-GojoBoRI (1986) and the italic figures, with that of INa (1994). As for the accession

number and the data source, see APPENDIX.

estimate was calculated using the method of KiMURA and
Onra (1972) which is also in the ODEN Package.

Since the assumption of random base substitution is
often not satisfied, the method of NEI-GOJOBORI is not
quite satisfactory. INA (1994) invented a new method
which brings KiIMURA’s two-parameter model into the
NEI-Gojosorl method. Through extensive simulations,
Ina has shown that his method usually gives a better es-
timate than that of NE-GOJOBORI, and his method has
been used in this study. On the other hand, Li’s (1993)
new method, which gives a similar estimate to INA’s, has
turned out to be often inapplicable for the present data
sets and is not used here. For the present purpose of
finding the acceleration of nonsynonymous substitu-
tions in conjunction with functional differentiation, an
analysis using the two methods gives satisfactory results.
In INA’s method, the ratio of transition to transversion
is estimated from the third position of codons, and the
estimated value is used for calculating the numbers of
synonymous and nonsynonymous substitutions. When
the sequence used was short, i.e., less than 150 nucle-
otide sites, the ratio was estimated beforehand, by using
the larger region that includes the sequence.

RESULTS OF ANALYSES

Troponin C gene family: Troponin Cis a protein that
regulates excitation-contraction coupling in heart and
skeletal muscle. In mammals, two distinct isoforms of
this protein have been identified, the fast and the slow
types, which are encoded by homologous but different
genes (DHOOT and PERRY 1979). DNA sequences of both
genes in mouse and man were available and analyzed.

Table 1 shows the results. The upper figures are the
estimated number of synonymous substitutions with a
standard error per 100 sites, and the lower figures, that
of nonsynonymous substitutions. The Roman figures
were calculated using the method of NEFGOJOBORI, and

the italic figures, with that of INA. Note that the estimated
values by the two methods considerably differ in some se-
quence pairs, but are very similar in other pairs. This is
because the difference of the estimated values depends on
the magnitude of bias in transition-transversion ratio. For
details of such effects, see INA (1994).

A striking pattern was found; the number of nonsyn-
onymous substitutions relative to that of synonymous
substitutions was much smaller for the slow-slow and for
the fast-fast comparisons than for the slow-fast compari-
sons. In other words, amino acid substitution must have
been accelerated during the period of differentiation of
the slow and the fast troponins, and then was slowed
down subsequently. According to PARMACEK et al.
(1990), the divergence between the two forms of tro-
ponin C is associated with their functional differentia-
tion. This statement has now been expanded so that
functional differentiation is associated with rapid amino
acid substitution. In this process, positive Darwinian se-
lection is the most likely cause of the acceleration.

a-Actin genes: Actin is the most abundant of the cyto-
skeletal proteins. Actin genes form a highly conserved
family in eucaryote genomes. Several isoforms of a-actin
are known such as skeletal, cardiac and smooth muscle
types (HU et al. 1986). By comparing sequences of these
isoforms, it is found that about half of the nonsynony-
mous substitutions are within the first exon that is only
about 12% of the protein. It has also been reported that
the amino terminus (first exon) is the site of major actin-
myosin interactions (SUTOH 1982). Thus, it is likely that
the functional differentiation among the isoforms, if
any, may be revealed by the first exon sequence. In the
following, the result of sequence analysis of the first
exon is presented.

In Table 2, the estimated numbers of synonymous and
nonsynonymous substitutions are given as before. Again,
the number of nonsynonymous substitutions relative to
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TABLE

3

The number of synonymous substitutions (upper figures) and that of nonsynonymous substitutions (lower figures) per 100 sites among gene
members of HSP70 family

Heat shock responsive

Heat shock cognate Testis specific

HUMP70B MUSHSP7A2 HUMHSP70D BOVHSCP HSHSC70 MUSHSPCA RATHST70A MUSHSC70B
HUMP70B 72.30 * 6.17 70.17 * 6.02 239.03 + 52.23 — 166.23 + 21.08 106.78 * 10.00 101.93 £ 9.23
67.89+ 590 61.75* 546 163.66+ 35.32 210.04* 86.06 129.32* 18.66 92.83+ 9.35 89.75+ 8.74
MUSHSP7A2 11.08 + 0.94 32.84 + 3.25 — — — 91.74 £ 8.27 89.90 + 7.92
11.28* 0.96 34.39* 3.42 — — 218.74 * 101.67 89.84 * 8.40 8541+ 779
HUMHSP70D 10.57 = 0.92 2.48 > 0.43 — — — 85.71 + 7.68 84.56 * 7.42
10.98 * 0.96 2.45* 0.42 — — 189.48 * 57.38 79.04 * 7.36 7942 7.20
BOVHSCP 13.82 = 1.07 10.26 = 0.90 9.53 *+ 0.87 46.66 + 4.31 74.71 * 6.69 —_ —_
14.84*x 115 11.22*0.99 10.45*0.95 34.69* 3.34 54.04x 516 — —_
HSHSC70 13.66 * 1.06 10.18 + 0.90 9.36 = 0.86 0.14 £ 0.10 68.60 = 6.14 —_ —
1475 115 11.24*0.99 10.38*0.95 0.16 £ 0.11 50.41 x 4.82 — —_
MUSHSPCA 13.66 = 1.08 10.31 = 0.92 9.42 = 0.88 0.37 £ 0.16 0.36 = 0.16 — —_
1452+ 115 11.10+£0.99 10.14=* 0.94 0.40%£0.18 0.40*0.18 251.38 * 200.06 —
RATHST70A 1437 + 1.11 11.13 £ 0.96 11.32 = 0.97 8.57 + 0.83 8.62 > 0.83 8.88 = 0.86 13.82 + 1.96
14.93*x 115 11.21*0.97 11.57%0.99 9.51%0.92 9.44* 0.91 953+ 0.92 11.51 % 1.64
MUSHSC70B 14.31 = 1.09 10.89 * 0.93 11.20 = 0.95 8.66 + 0.82 8.71 + 0.82 8.77 + 0.84 0.40 + 0.17
1483 1.13 11.05*0.95 11.39*0.97 9.55* 0.90 9.57% 0.91 9.44* 0.90 0.43*0.18

See Table 1. Dashes indicate unestimable cases.

that of synonymous substitutions is smaller for the same-
isoform comparisons than for the different-isoform
comparisons. In fact, for most of the within-isoform
comparisons, no nonsynonymous substitution is ob-
served. Both of two exceptions, HSACT-OCRNAASMA
pair of the smooth muscle actin and HUMACTCA1-
MUSACTCAD pair of the cardiac actin, are caused by a
two-step change of a codon, and there is no amino acid
difference. Note that, in counting the numbers of syn-
onymous and nonsynonymous substitutions, all possible
paths are equally weighted for multiple-step changes of
a codon in the NEI-GojoBoRI and the INa methods. Thus,
itis likely that there is no amino acid substitution among
the same-isoform sequences. As for the different-isoform
comparisons, there are 3-8.5 nonsynonymous differ-
ences that result in amino acid differences. Actually, the
skeletal actin and the cardiac actin are coexpressed and
their tissue specificity is not complete (GUNNING et al.
1983). The amino acid difference between the two iso-
forms is smaller than that between the smooth muscle actin
and skeletal or cardiac actin. The amino acid divergence
seems to correlate well with the tissue specificity. The es-
timated numbers of synonymous and nonsynonymous sub-
stitutions have large standard errors because of the short
region counted, and statistical significance can not be ob-
tained for the differences of the ratio of the nonsynony-
mous to the synonymous substitutions. However, the ten-
dency is clear, and it is likely that some amino acid
substitutions have been caused by the functional differen-
tiation of binding with the tissue specific myosin.

Heat shock protein 70 gene family: Heat shock in-
duces several kinds of proteins in most organisms,
among which heat shock protein (hsp) 70 is the fore-

most. In mammals, this protein is encoded by a multi-
gene family (LiNnpQuisT 1986), and several DNA se-
quences of mammals are available. The multigene
family includes heat shock responsive and nonrespon-
sive genes, and the latter participates in regulation of
ordinary cell growth (PELHAM 1986; GIEBEL et al. 1988).
DNA sequences of hsp70 genes of several mammalian
species were analyzed; three sequences of the heat shock
responsive gene, three sequences of the heat shock cog-
nate gene and two sequences of the testis-specific gene.
Table 3 presents the results. As before, the upper figures
are the estimated number with standard error of syn-
onymous substitutions and the lower figures, that of
nonsynonymous substitutions per 100 sites. A dash in-
dicates the inestimable case. Again, the relative values of
nonsynonymous and synonymous substitution numbers
show an interesting pattern. Namely, the number of
nonsynonymous substitutions relative to that of synony-
mous ones is quite small for comparisons within the cog-
nate or within the testis-specific group, butit is not so for
comparisons among heat-shock-inducible genes and for
comparisons between heat-shock-inducible and testis-
specific genes. The cognate group appears to be too
divergent from the other groups to get a reliable esti-
mate of the number of synonymous substitutions.
Sequence divergence within the heat-shock-inducible
group needs more detailed examination. Note that the two
human sequences of this group are the product of gene
duplication which occurred before the human-mouse di-
vergence, and HUMHSP70D is orthologous to the mouse
gene. It can be seen that the number of nonsynonymous
substitutions relative to that of synonymous ones is smaller
between the human-mouse orthologous comparison than
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between paralogous comparisons. The difference in rela-
tive values is statistically significant. Thus the general pat-
tern of the rapid amino acid divergence in connection with
functional differentiation is observed for the hsp70 gene
family.

a,-Antitrypsin gene family: Proteases and their in-
hibitors are encoded by gene families in mammals. For-
tunately, some of their tertiary structures have been ana-
lyzed, and the regions of the reactive center have been
determined. Because of the hypervariability of amino
acids at the reactive center, it has been proposed that
positive natural selection has operated to increase the
rate of amino acid substitutions (LASKOWSKI ¢f al. 1987;
HiLL and Hastie 1987). Gene conversion has also been
suggested as promoting variability (OHTA and Basten
1992). Here it is desirable to examine how this hypervari-
ability is related to gene duplication. Several mouse gene
sequences of aj-antitrypsin available from GenBank, ap-
parently have occurred by recent duplication, and show
hypervariability at the reactive center (BORRIELLO and
KrAUTER 1991). In this report, mouse sequences were
analyzed together with sequences from other species;
human, rabbit, guinea pig and rat (see APPENDIX). The
results for the reactive center region are presented,
which include 21 amino acid sites.

Table 4 shows the results. The upper and lower figures
are the numbers of synonymous and nonsynonymous
substitutions as before. From the table, it can be seen
that, among the mouse sequences, the nonsynonymous
substitution number exceeds the synonymous substitu-
tion number, but that, for sequence pairs between spe-
cies, the former does not exceed the latter. Itis likely that
the acceleration of amino acid substitution occurred
through selection for mouse genes in conjunction with
gene duplication.

DISCUSSION

The present analyses provide more examples of evo-
lution by gene duplication in which functional differ-
entiation accompanies acceleration of amino acid sub-
stitution (OHTA 1991). Although only coding regions
were analyzed, these examples also suggest that evolu-
tion of regulatory elements is important, since func-
tional differentiation is correlated with changes of
expression. It would be desirable to study the differ-
entiation pattern of regulatory elements in the future.
Actually, one would expect that more duplicated
genes deteriorate than observed from the theoretical
point of view (KiMura and KiNG 1979; Onta 1988).
One reason for less chance of their deterioration than
expected would be the prevention of deterioration
through continued expression. Unless regulatory el-
ements change, abnormal products would be harmful
and would be selected against. Then protein se-
quences and regulatory elements would have to co-
evolve. In such a situation, acceleration of amino acid
substitution is likely to be caused by positive Darwin-

ian selection rather than by simple relaxation of se-
lective constraints.

In eukaryote genomes, particularly in mammalian ge-
nomes, there are numerous gene families that origi-
nated mostly by gene duplication. However, in many
cases, the duplication event was ancient, and synony-
mous substitutions are saturated. Then the present ap-
proach is not applicable. It should be noted that, even
in the present results, the synonymous substitution num-
ber per 100 sites is not very reliable, when the number
is 100 or more in the tables. The purpose of this study
is to show the pattern of synonymous vs. nonsynony-
mous substitutions in duplicated genes, and not to es-
timate the divergence accurately.

Another related problem in the present study is the
concept of a molecular clock. It is now clear that the rate
of amino acid substitution varies according to the func-
tional differentiation of the products, which is often as-
sociated with gene duplication. Amino acid sequences
are commonly used for constructing phylogenetic trees.
One has to be careful in interpreting the results because
of the acceleration of amino acid substitution at the pe-
riod of functional differentiation.
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APPENDIX

Sequences from mouse, human, rabbit, guinea pig and rat used are given in Table 5.
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Accession number and data source
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